HIV infection: epidemiology, pathogenesis, treatment, and prevention

Gary Maartens, Connie Celum, Sharon R Lewin

HIV prevalence is increasing worldwide because people on antiretroviral therapy are living longer, although new infections decreased from 3·3 million in 2002, to 2·3 million in 2012. Global AIDS-related deaths peaked at 2·3 million in 2005, and decreased to 1·6 million by 2012. An estimated 9·7 million people in low-income and middle-income countries had started antiretroviral therapy by 2012. New insights into the mechanisms of latent infection and the importance of reservoirs of infection might eventually lead to a cure. The role of immune activation in the pathogenesis of non-AIDS clinical events (major causes of morbidity and mortality in people on antiretroviral therapy) is receiving increased recognition. Breakthroughs in the prevention of HIV important to public health include male medical circumcision, antiretrovirals to prevent mother-to-child transmission, antiretroviral therapy in people with HIV to prevent transmission, and antiretrovirals for pre-exposure prophylaxis. Research into other prevention interventions, notably vaccines and vaginal microbicides, is in progress.

Epidemiology

The HIV epidemic arose after zoonotic infections with simian immunodeficiency viruses from African primates; bushmeat hunters were probably the first group to be infected with HIV. HIV-1 was transmitted from apes and HIV-2 from sooty mangabey monkeys. Four groups of HIV-1 exist and represent three separate transmission events from chimpanzees (M, N, and O), and one from gorillas (P). Groups N, O, and P are restricted to west Africa. Group M, which is the cause of the global HIV pandemic, started about 100 years ago and consists of nine subtypes: A–D, F–H, J, and K. Subtype C predominates in Africa and India, and accounted for 48% of cases of HIV-1 in 2007 worldwide. Subtype B predominates in western Europe, the Americas, and Australia. Circulating recombinant subtypes are becoming more common. The marked genetic diversity of HIV-1 is a consequence of the error-prone function of reverse transcriptase, which results in a high mutation rate. HIV-2 is largely confined to west Africa and causes a similar illness to HIV-1, but immunodeficiency progresses more slowly and HIV-2 is less transmissible. In 2012 an estimated 35·3 million people were living with HIV. Sub-Saharan Africa, especially southern Africa, has the highest global burden of HIV (70·8%; figure 1). The global epidemiology of HIV infection has changed markedly as a result of the expanding access to antiretroviral therapy; by 2012, 9·7 million people in low-income and middle-income countries had started antiretroviral therapy, whereas global incidence has decreased from 31·0 million in 2002, to 35·3 million in 2012, because people on antiretroviral therapy are living longer, whereas global incidence has decreased from 3·3 million in 2002, to 2·3 million in 2012. The reduction in global HIV incidence is largely due to reductions in heterosexual transmission. Punitive attitudes towards people who inject drugs (especially in eastern Europe) restrict the implementation of opioid substitution treatment and needle and syringe programmes, which are effective prevention strategies that reduce HIV transmission. In regions where the main route of transmission is men who have sex with men (eg, western and central Europe and the Americas), incidence is stable despite high antiretroviral therapy coverage (eg, 75% in Latin America in 2012, and 80% in the UK in 2010). The drivers of the HIV epidemic in men who have sex with men are complex, and include increasing risk behaviour since the introduction of effective antiretroviral therapy (a phenomenon termed therapeutic optimism), high transmission risk of receptive anal intercourse, sexual networks, and stigma restricting access to care.

The number of new infections in children in the 21 priority African countries in the UN Programme on HIV/AIDS (UNAIDS) global plan decreased by 38% between 2009 and 2012, because of increased access to antiretrovirals to prevent mother-to-child transmission. However, access to antiretroviral therapy is much lower in children than adults.

HIV is a major contributor to the global burden of disease. In 2010, HIV was the leading cause of disability-adjusted life years worldwide for people aged 30–44 years, and the fifth leading cause for all ages. Global AIDS-related deaths peaked at 2·3 million in 2005, and decreased to 1·6 million by 2012. About 50% of all deaths...
in people on antiretroviral therapy in high-income countries are not due to AIDS. In one study, major causes of non-AIDS-related deaths were non-AIDS-defining cancers (23·5%), cardiovascular disease (15·7%), and liver disease (14·1%). People with HIV have a 50% increased risk of myocardial infarctions than do people without HIV after adjustment for vascular risk factors. Liver disease is common, mainly because of co-infection with hepatitis B and C, which share similar routes of transmission with HIV.

Tuberculosis continues to be a major cause of morbidity and mortality in low-income and middle-income countries, especially in Africa. Findings of a study done in South Africa in the pre-antiretroviral therapy era showed that tuberculosis doubled within a year after HIV infection, thereafter incidence increased as immunity decreased, and reached a very high incidence of 25·7 per 100 person-years in patients with CD4 T-cell counts lower than 50 cells per μL. Worldwide, HIV-related tuberculosis mortality is decreasing, but many people with HIV in Africa die of undiagnosed tuberculosis.

HIV-1 transmission

The most important factor that increases the risk of sexual transmission of HIV-1 is the number of copies per mL of plasma HIV-1 RNA (viral load), with a 2·4 times increased risk of sexual transmission for every 1 log10 increase. Acute HIV infection, which causes very high plasma viral loads in the first few months, is an important driver of HIV epidemics. A reduction in plasma viral load of 0·7 log10 is estimated to reduce HIV-1 transmission by 50%. Seminal and endocervical viral load independently predict risk of HIV-1 sexual transmission, after adjustment for plasma viral load. Other factors associated with increased risk of sexual transmission of HIV include sexually transmitted infections (notably genital ulcers of any cause, herpes simplex type-2 infection, and bacterial vaginosis), pregnancy, and receptive anal intercourse. Male circumcision is associated with a reduced risk of sexual transmission of HIV.

Findings of some observational studies showed an increased risk of HIV-1 acquisition in women who used long-acting injectable progestogens for contraception, but not with combined oral contraceptives. A health priority in eastern and southern Africa, where the incidence of HIV-1 in young women is very high, is to find out whether long-acting injectable progestogens (the commonest form of contraception used in this region) increase HIV-1 transmission.

Behavioural factors that increase HIV-1 sexual transmission include many sexual partners, and concurrent partnerships. Findings of a study of African heterosexual serodiscordant couples showed that self-reported condom use reduced the per-coital act risk of HIV-1 transmission by 78%. Sex inequality is an important driver of the HIV epidemic, especially in sub-Saharan Africa where women account for 57% of people living with HIV. Injection and non-injection drug use, including alcohol, are associated with increased sexual risk behaviour, whereas injection drug use causes HIV transmission by shared needles. Women who reported intimate partner violence had an increased incidence of HIV infection in a South African study. UNAIDS have identified stigma against HIV, and discrimination and punitive laws against high-risk groups (eg, men who have sex with men, people who inject drugs, and commercial sex workers) as barriers for people to undergo HIV testing, access care, and access prevention measures.

Pathogenesis

HIV life cycle and host immune responses

Figure 2 shows the virus life cycle. The main target of HIV is activated CD4 T lymphocytes; entry is via interactions with CD4 and the chemokine coreceptors, CCR5 or CXCR4. Other cells bearing CD4 and chemokine
receptors are also infected, including resting CD4 T cells, monocytes and macrophages, and dendritic cells. CD4-independent HIV infection of cells can happen, notably in astrocytes\(^3\) and renal epithelial cells,\(^3\) and subsequent HIV gene expression has an important role in the pathogenesis of HIV-associated neurocognitive disorder (related to astrocytes) and nephropathy (related to epithelial cells). A range of host proteins interact with HIV proteins or HIV DNA to either restrict or promote virus replication in specific cell types (table 1).

Transmission of HIV across mucosal membranes is usually established by one founder virus, which has unique phenotypic properties including usage of CCR5 rather than CXR4 for entry,\(^4\) enhanced interaction with dendritic cells, and resistance to interferon-\(\alpha.\)\(^5\) Transmission of the founder virus is followed by a rapid increase in HIV replication and then a striking induction of inflammatory cytokines and chemokines, which is in stark contrast to the minimum initial response to other chronic viral infections such as hepatitis B or hepatitis C.\(^6\) Viral load then decreases to a so-called setpoint, the level of which is established largely by innate and adaptive immune responses (figure 3). HIV-specific CD8 killing of productively infected cells mediated by T cells happens soon after infection, and the potent adaptive immune response to HIV selects for the emergence of mutations in key epitopes, often leading to immune escape.\(^6\) In some HLA types, such as individuals with HLA-A27 allele infected with clade B, an effective immune response can arise, characterised by HIV-specific T cells with high avidity, polyfunctionality, and capacity to proliferate\(^6\) against both the immunodominant and escaped peptides.\(^7\) However, in nearly all individuals, progressive exhaustion of HIV-specific T cells happens, characterised by high expression of programmed death 1 (PD-1) on both total and HIV-specific T cells and a loss of effector function.\(^8\)

Neutralising antibodies arise roughly 3 months after transmission and select for viral escape mutants.\(^9\) Broadly neutralising antibodies, which can neutralise many HIV-1 subtypes, are produced by about 20% of patients.\(^10\) These antibodies are characterised by a high frequency of somatic mutations that often take years to develop.\(^11\) Broadly neutralising antibodies do not usually provide benefit to the patient because of the development of viral escape mutants.\(^11\) The production of broadly neutralising antibodies by use of new immunogen design strategies is a major focus of vaccine research.\(^11\)

The innate immune response to HIV is largely mediated by natural killer cells, and is also crucial for virus control. Viral escape mutants also emerge, and restrict the antiviral effects of natural killer cells.\(^11\)

Figure 2: HIV life cycle showing the sites of action of different classes of antiretroviral drugs

Adapted from Walker and colleagues,\(^3\) by permission of Elsevier.
Immune dysfunction

The hallmark of HIV infection is the progressive depletion of CD4 T cells because of reduced production and increased destruction. CD4 T cells are eliminated by direct infection, and bystander effects of syncitia formation, immune activation, proliferation, and senescence. In early infection, a transient reduction in circulating CD4 T cells is followed by recovery to near normal concentrations, which then slowly decrease by about 50–100 cells per μL (figure 3).

The most important effect on T-cell homeostasis happens very early in the gastrointestinal tract, which has a massive depletion of activated CD4 T cells with minimum recovery after antiretroviral therapy. In addition to loss of total CD4 T cells, profound changes in T-cell subsets happen, including preferential loss of T-helper-17 cells, and mucosal-associated invariant T cells, which are crucial for defence against bacteria. The profound depletion of lymphoid cells in the gastrointestinal tract, together with enterocyte apoptosis, and enhanced gastrointestinal tract permeability, leads to increased plasma concentration of microbial products such as lipopolysaccharides. Finally, destruction of the fibroblastic reticular cell network, collagen deposition, and restricted access to the T-cell survival factor interleukin 7 in the lymphoid tissue further contribute to depletion of both CD4-naive and CD8-naive T cells.

Immune activation

HIV infection is also characterised by a marked increase in immune activation, which includes both the adaptive and innate immune systems, and abnormalities in coagulation. The drivers for immune activation include the direct effects of HIV as a ligand for the Toll-like receptor (TLR7 and TLR 8) expressed on plasmacytoid dendritic cells, leading to production of interferon-α; microbial translocation, with lipopolysaccharide as a potent activator or TLR4 leading to the production of pro-inflammatory cytokines such as interleukin 6 and tumour necrosis factor α (TNFα); co-infection with viruses such as cytomegalovirus that induce profound expansion of activated cytomegalovirus-specific T cells; and a reduced ratio of T-helper-17 and regulatory T cells, especially in the gastrointestinal tract.

Evidence of residual inflammation or increased immune activation exists, even in patients with HIV with adequate CD4 T-cell restoration on antiretroviral therapy (figure 3). Markers of residual inflammation in patients with HIV on antiretroviral therapy have been significantly associated with mortality, cardiovascular disease, cancer, neurological disease, and liver disease. Intensification of antiretroviral therapy in participants with virological suppression with the addition of the integrase inhibitor raltegravir reduced T-cell activation in about a third of participants. These data suggest that low-level HIV replication might contribute to persistent inflammation. Treatment of co-infections, such as cytomegalovirus and hepatitis C, reduces T-cell activation too.

Although many studies have identified associations between different biomarkers of inflammation and adverse clinical events, causation in studies in people has been difficult to establish. So far, strategies aimed to reduce residual inflammation in patients with HIV have consisted of small observational studies with surrogate endpoints. Several drugs that are available for other indications (eg, statins, aspirin, angiotensin-converting enzyme inhibitors, and hydroxychloroquine) have the potential to reduce HIV-associated inflammation. Randomised controlled studies are needed to establish whether targeting of inflammation in people with virological suppression on antiretroviral therapy will have a significant clinical effect.

Antiretroviral therapy

Combination antiretroviral therapy regimens that were able to suppress viral replication were developed in the late 1990s and transformed HIV from a progressive illness with a fatal outcome into a chronic manageable disease. More than 25 licensed drugs that block HIV replication at many steps in the virus lifecycle are available (figure 2). Recommended antiretroviral therapy regimens are less toxic, more effective, have a lower pill burden, and are dosed less frequently than the initial protease inhibitor-based regimens. Standard antiretroviral therapy regimens combine two nucleoside reverse transcriptase inhibitors (emtricitabine or lamivudine together with one of abacavir, tenofovir, or zidovudine) with a non-nucleoside reverse transcriptase inhibitor, protease inhibitor, or integrase inhibitor. Several effective nucleoside reverse transcriptase inhibitor-sparing regimens can be used if intolerance or resistance to nucleoside reverse transcriptase inhibitors develops.

After initiation of antiretroviral therapy, the plasma viral load decreases to concentrations below the lower limit of detection of available commercial assays in most people, usually within 3 months (figure 3). By contrast, the recovery of CD4 T cells in individuals on antiretroviral...
therapy is variable. In one study of responses to antiretroviral therapy at 6 months in low-income countries, 56% of patients had a successful virological and CD4 response, 19% a virological response without a CD4 response, and 15% a CD4 response without a virological response. Individuals with impaired CD4 T-cell recovery despite virological suppression, which is associated with several risk factors (panel), are at increased risk of adverse outcomes, including serious non-AIDS events. Adjunctive interleukin 2 significantly increases CD4 T-cell counts, but does not result in clinical benefit. Interleukin 7, which enhances proliferation of both naive and memory T cells, also increases CD4 T-cell counts, although whether this results in enhanced clinical benefit is unknown. However, interleukin 7 might have the undesirable effect of expanding the pool of T cells that are latently infected with HIV.

Guidelines in high-income countries allow clinicians to choose a starting regimen of dual nucleoside reverse transcriptase inhibitors combined with either a non-nucleoside reverse transcriptase inhibitor, a ritonavir-boosted protease inhibitor, or an integrase inhibitor, because these three regimens have similar efficacy and tolerability. Subsequent antiretroviral therapy regimen switches for virological failure are guided by the results of resistance testing. For low-income and middle-income countries, WHO recommends a public health approach to use of antiretroviral therapy with standardised first-line (non-nucleoside reverse transcriptase inhibitor plus dual nucleoside reverse transcriptase inhibitors) and second-
line (ritonavir-boosted protease inhibitor plus dual nucleoside reverse transcriptase inhibitors) regimens, and restricted monitoring for both efficacy and toxic effects.86 Resistance testing is seldom available. Clinical and CD4 count monitoring is used in many low-income countries where viral load monitoring is unavailable, but this monitoring strategy86 results in both unnecessary switches to second-line therapy and continuation of failing first-line antiretroviral therapy regimens, which will increase the number of resistance mutations. Viral load monitoring would be cost effective in resource-limited settings if low-cost tests, which are available, were used.86

Investigators of a study8 that compared a public health approach with individualised approaches to antiretroviral therapy in people starting treatment in South Africa and Switzerland, reported similar virological outcomes, but the switching rate for toxic effects in Switzerland was higher than in South Africa. Early mortality rates after initiation of antiretroviral therapy are much higher in resource-limited settings than in high-income countries after adjustment for baseline CD4 count, but the difference attenuates after 6 months.88 Near-normal life expectancy is estimated for patients (other than people who inject drugs) who achieve a normal CD4 count and a suppressed viral load on antiretroviral therapy.89

Increasing data suggest that short-course antiretroviral therapy started in early HIV infection might slow disease progression, but further studies of patients presenting with acute infection need to be done.89 Most international guidelines, including those for low-income and middle-income countries,89 have increased the CD4 criterion for initiation of antiretroviral therapy to 500 cells per μL or higher, despite no good evidence that antiretroviral therapy initiation at CD4 counts higher than 350 cells per μL provides individual benefit.89 Increased access to antiretroviral therapy is expected to reduce HIV transmission, but the durability of this effect is unknown, and starting antiretroviral therapy early exposes patients to toxic effects of drugs and the development of resistance before they derive clinical benefit.89 Retention of patients in care in low-income and middle-income countries will be a major challenge because the number of people eligible for antiretroviral therapy will increase from 16·7 million to 25·9 million in 2013, if the WHO 2013 guidelines are introduced.84 In sub-Saharan Africa, 57% of people are expected to complete eligibility assessment for antiretroviral therapy in South Africa.94 Low-income and middle-income countries, as shown by a US report86 that noted that only 51% of patients who were diagnosed with HIV were retained in care in 2010.

Antiretroviral therapy taken in the presence of pre-existing antigens combined with immune dysregulation, which happens shortly after initiation of antiretroviral therapy,89 Most commonly, the antigens triggering immune reconstitution disease are from opportunistic infections, notably tuberculosis, cryptococcal meningitis, and cytomegalovirus retinitis.99 Immune reconstitution disease is common, with an overall prevalence of 3%–6% in antiretroviral therapy-naive people in high-income countries that has reached a plateau of 10%–17% with resistance to one or more antiretroviral drugs, whereas the prevalence is steadily increasing in low-income and middle-income countries, reaching 6%–6% in 2009.99 Guidelines for high-income countries recommend a resistance test before initiation of antiretroviral therapy, but this strategy is too expensive to implement in resource-limited settings.

Immune reconstitution disease

Immune reconstitution disease, also called immune reconstitution inflammatory syndrome, is an immunopathological response resulting from the rapid restoration of pathogen-specific immune responses to pre-existing antigens combined with immune dysregulation, which happens shortly after initiation of antiretroviral therapy.99 Most commonly, the antigens triggering immune reconstitution disease are from opportunistic infections, notably tuberculosis, cryptococcal meningitis, and cytomegalovirus retinitis.99 Immune reconstitution disease is common, with an overall prevalence of 3%–6% in antiretroviral therapy-naive people in high-income countries that has reached a plateau of 10%–17% with resistance to one or more antiretroviral drugs, whereas the prevalence is steadily increasing in low-income and middle-income countries, reaching 6%–6% in 2009.99 Guidelines for high-income countries recommend a resistance test before initiation of antiretroviral therapy, but this strategy is too expensive to implement in resource-limited settings.

Panel: Factors associated with poor CD4 T-cell recovery after antiretroviral therapy

Host factors
- Older age, low CD4 nadir, high baseline HIV RNA
- HLA type
- Genetic polymorphisms in:
 - Chemokine/chemokine receptors—eg, CCR5D32
 - Cytokine/cytokine receptors—eg, interleukin 7 receptor
 - Fas/Fas ligand

Viral factors
- CXCR4 using virus
- Co-infection with cytomegalovirus, hepatitis C virus, or GB virus C

Immunological factors
- Low thymic output
- Poor bone marrow function
- Increased immune activation
- Proliferation
- Senescence
- Increased PD-1 expression
- Increased apoptosis

Panel: Factors associated with poor CD4 T-cell recovery after antiretroviral therapy

Host factors
- Older age
- Low CD4 nadir
- High baseline HIV RNA
- HLA type
- Genetic polymorphisms in:
 - Chemokine/chemokine receptors
 - Cytokine/cytokine receptors
 - Fas/Fas ligand

Viral factors
- CXCR4 using virus
- Co-infection with cytomegalovirus, hepatitis C virus, or GB virus C

Immunological factors
- Low thymic output
- Poor bone marrow function
- Increased immune activation
- Proliferation
- Senescence
- Increased PD-1 expression
- Increased apoptosis

incidence of 16·1% reported in a systematic review. The disease causes high morbidity, but mortality is low (4·5%), except with cryptococcal meningitis immune reconstitution disease (20·8% mortality). Findings of a small randomised controlled trial showed benefit of adjunctive prednisone in participants with tuberculosis-associated immune reconstitution disease.

Immune reconstitution disease happens more commonly when antiretroviral therapy is started in patients with low CD4 counts or soon after starting treatment for the opportunistic infection. Strategies to reduce immune reconstitution disease include initiation of antiretroviral therapy at high CD4 counts, delayed initiation of antiretroviral therapy in patients with an infection (especially if infection includes the CNS), and screening for and prevention of opportunistic infections before initiation of antiretroviral therapy.

Latency, reservoirs, and potential cure

Despite great successes of antiretroviral therapy in the control of HIV replication and significant reduction of morbidity and mortality, antiretroviral therapy is unable to cure HIV and life-long treatment is needed. HIV can persist in patients on antiretroviral therapy because of resting memory T cells that are long-lived and latently infected, residual replication in some individuals, and anatomical reservoirs such as the gastrointestinal tract, lymphoid tissue, and the CNS.

Latency is defined as integration of HIV DNA into the host genome in the absence of virus production. Latency can be established in vitro via direct infection of resting CD4 T cells in the presence of specific chemokines, or after reversion of an activated infected T cell to a resting state (figure 4). Latency has been shown in vivo in central and transitional memory T cells, and in naive T cells. Latency can also be established in monocyte-macrophages and astrocytes, but the importance of these cells to virus persistence in patients on antiretroviral therapy is unclear.

Many factors restrict efficient HIV transcription from the integrated provirus in latently infected resting CD4 T cells including the sub-nuclear localisation of the provirus, the absence of transcription factors such as NF-kB and nuclear factor of activated T cells, the presence of transcriptional repressors, the epigenetic control of the HIV promoter (including histone modification by acetylation and methylation, and DNA modification), and sub-optimum concentrations of the virus protein tat. Additionally, post-transcriptional blocks including microRNAs restrict viral translation in resting T cells. Finally, latently infected T cells can undergo homeostatic proliferation via stimulation from homeostatic cytokines such as interleukin 7, which further contribute to their long half-life and persistence.

Much interest surrounds the discovery of either a functional cure (long-term control of HIV without antiretroviral therapy) or a sterilising cure (complete elimination of all HIV-infected cells). Hopes that a cure might be possible have been raised by a case report of a man who underwent stem cell transplants for leukaemia, and an infant who started antiretroviral therapy soon after delivery. The best documented report of cure is the Berlin patient, a man with HIV on antiretroviral therapy who had acute myeloid leukaemia and received two bone marrow transplants from a donor with a homozygous defect in CCR5, a key coreceptor needed by HIV for cell entry. Shortly after transplantation, the patient ceased antiretroviral therapy and minimum or no virus has been detected in plasma or tissue for more than 6 years. This case has inspired the development of gene therapy to eliminate CCR5 in patient-derived T cells and stem cells with new technologies such as zinc finger nucleases that can effectively eliminate CCR5 expression.

Early initiation of antiretroviral therapy alone might have a substantial effect on reduction of the reservoir and
preservation of effective immune function. Long-term control of low-level viraemia after cessation of antiretroviral therapy has been reported in 1–15% of individuals who initiated antiretroviral therapy in acute infection. Very early initiation of antiretroviral therapy might restrict infection of long-lived central memory T cells that have been latently infected.

Another approach to cure HIV is to eliminate latently infected T cells. One strategy under investigation is the activation of latent HIV, which will induce expression of viral proteins leading to immune-mediated clearance or cytolysis of infected cells (figure 4). In vitro, many compounds can activate HIV production from latency, including histone deacetylase inhibitors, methylation inhibitors, activators of NF-kB such as prostratin, and other compounds including disulfiram. Results of the first studies of the histone deacetylase inhibitor vorinostat, showed an increase in HIV transcription, although recent vaccine trials with dendritic cells and a cytomegalovirus vector in a simian model have shown promise.

Prevention
Mother-to-child HIV-1 transmission
During the past two decades, remarkable progress has been made in the risk reduction of perinatal HIV-1 transmission. Knowledge about the timing of HIV-1 transmission to infants has allowed the development of appropriate interventions. The risk of HIV-1 transmission to the infant is about 25% at delivery in the absence of interventions, with most of the risk arising after 36 weeks and especially intrapartum. HIV-1 transmission happens at a rate of 8-9 per 100 child-years of breastfeeding after the fourth week, with higher rates during the first 4 weeks. Mixed feeding roughly doubles the risk of HIV-1 transmission compared with exclusive breastfeeding. Prolonged breastfeeding is the norm in breastfeeding. Prolonged breastfeeding is the norm in the risk of HIV-1 transmission compared with exclusive breastfeeding. Prolonged breastfeeding is the norm in

Antiretroviral therapy is more effective at prevention of mother-to-child HIV-1 transmission than zidovudine plus one dose of nevirapine, and has the additional advantages of reducing sexual HIV transmission and reducing HIV-associated morbidity and mortality. Antiretroviral therapy should ideally be started after the first trimester, provided that women are well enough to wait. In resource-limited settings the reduction in infant HIV transmission by formula feeding is offset by a higher infant mortality, which shows the crucial role that breastfeeding has in child health. Strategies to reduce HIV transmission from breastfeeding in resource-limited settings include the use of antiretroviral monotherapy to infants or continuing combination antiretroviral therapy until weaning in mothers who do not qualify for ongoing antiretroviral therapy. WHO recommends either continuing combination antiretroviral therapy until weaning or for life in pregnant women with HIV who do not qualify for continuing antiretroviral therapy.

Antiretrovirals alone will not reach the goal of elimination of prevention of mother-to-child HIV-1 transmission. Access to antenatal care, HIV testing, and mother-to-child HIV-1 transmission interventions will need to be substantially increased in regions with high HIV prevalence. In Africa, uptake of mother-to-child HIV-1 transmission interventions was improved if the male partner was included, but this is often difficult to achieve. In low-income and middle-income countries, many women present late for antenatal care or deliver without antenatal care; therefore, HIV transmission to infants will be higher than when antiretroviral therapy is started at the optimum time of about 14 weeks. A further challenge to the implementation of antiretroviral therapy for mothers to prevent transmission from breastfeeding is that antiretroviral therapy adherence post partum has been found to be significantly lower than antepartum in a recent meta-analysis. Studies of interventions to improve post-partum adherence to antiretroviral therapy are urgently needed. Last, in view of the annual HIV-1 incidence rates of up to 10% in some areas of southern Africa, a crucial priority for prevention of mother-to-child HIV-1 transmission is to reduce new HIV infections in young women, which would lead to fewer HIV-1 infected pregnant women and infants.

Sexual HIV transmission
Prevention of sexual HIV transmission has been a priority since the beginning of the epidemic. No one prevention intervention is effective enough on its own, and many interventions are necessary to control the epidemic. Several major advances have been made in research on prevention intervention in the past 5 years, especially including the use of antiretrovirals. The most potent intervention to reduce sexual transmission of HIV is antiretroviral therapy, as shown by findings of the landmark HPTN 052 study. In this study the partner with HIV from a serodiscordant couple with CD4 counts
Partners PrEP;144 Botswana TDF2;145 Bangkok;146 iPrEx;147 FemPrEP;148 VOICE;149 CAPRISA 004. TDF=tenofovir. FTC=emtricitabine. References for studies: HPTN052;135 Orange Farm;141 Kisumu;142 Rakai;143

Clinical trials of interventions to prevent sexual transmission of HIV-1

Figure 5: Clinical trials of interventions to prevent sexual transmission of HIV-1

-200 –175 –150 –125 –100 –75 –50 –25 0 25 50 75 100

Effect size (% with 95% CI)

Favours control Favours intervention

ART to prevent transmission
HPTN 052
Male medical circumcision
Orange Farm
Kisumu
Rakai
Pre-exposure prophylaxis
Partners PrEP (TDF+FTC)
Partners PrEP (TDF)
Botswana TDF2 (TDF+FTC)
Bangkok (TDF)
FOX (TDF+FTC)
FemPrEP (TDF+FTC)
VOICE (TDF+FTC)
VOICE (TDF)
Vaginal TDF
CAPRISA 004
VOICE

Figure 5: Clinical trials of interventions to prevent sexual transmission of HIV-1

TDF=tenofovir. FTC=emtricitabine. References for studies: HPTN052,135 Orange Farm,141 Kisumu,142 Rakai,143 Partners PrEP,144 Botswana TDF2,145 Bangkok,146 iPrEx,147 FemPrEP,148 VOICE,149 CAPRISA 004 150

of 350–550 cells per μL were randomised to receive immediate antiretroviral therapy or deferred antiretroviral therapy (when two CD4 counts were <250 cells per μL). Immediate antiretroviral therapy was associated with a 96% reduction in HIV transmission events, in the context of almost universal viral suppression. Results of HPTN 052 also showed the need for complementary prevention interventions, because 25% of HIV transmissions were not from the infected partner. The public health effect of antiretroviral therapy coverage was assessed in rural KwaZulu-Natal, South Africa, an area with very high HIV prevalence.119 The risk of HIV acquisition was associated with antiretroviral therapy coverage in the local community. HIV acquisition was 38% lower in communities with high antiretroviral therapy coverage, defined as 30–40% among all HIV-infected people, than in communities with antiretroviral therapy coverage of less than 10%. The population-level effect of earlier antiretroviral therapy initiation at all CD4 counts, the so-called test and treat strategy, is being studied in randomised trials.

The feasibility of achievement of the benefits of antiretroviral therapy will need effective interventions to greatly increase knowledge of HIV status (achieved in Project Accept120 through community mobilisation and mobile HIV testing), and near universal testing (accomplished through home-based HIV testing).121 Effective messaging will be needed to motivate people to initiate antiretroviral therapy when they are asymptomatic and at high CD4 counts, and to address barriers to linkages between HIV care and retention in care.122 A cautionary point about the introduction of the test and treat strategy is that it could increase antiretroviral resistance.123

Pre-exposure prophylaxis with daily oral tenofovir or tenofovir plus emtricitabine effectively reduced HIV acquisition in four of six trials (figure 5). The efficacy of pre-exposure prophylaxis ranged from 44% to 75%, and was strongly associated with adherence (table 2). Factors that affect risk perception, uptake of pre-exposure prophylaxis, and adherence to pre-exposure prophylaxis need to be studied in different populations at high risk for HIV.

Vaginal and, more recently, rectal microbicides are attractive interventions because, unlike condoms, they are under the control of the receptive partner. Findings of 12 clinical trials of vaginal microbicides with non-specific activity against HIV and sexually transmitted infections failed to show efficacy.124 The emphasis has shifted to vaginal microbicides that target different stages of the HIV life cycle.125 Results of the CAPRISA 004 trial in South Africa showed that pericoital use of 1% tenofovir gel reduced HIV acquisition by 39%. By contrast, in the VOICE trial126 the daily 1% tenofovir gel group was stopped early because of absence of efficacy. The results of the FACTS 001 study (NCT01386294), a confirmatory trial of pericoital use of 1% tenofovir gel, are awaited. In recognition of the challenges with daily or pericoital dosing of topical microbicides, novel delivery strategies are being assessed with slow drug-eluting delivery devices, such as intra-vaginal rings containing antiretrovirals.127

Medical male circumcision is an effective HIV prevention intervention, which significantly decreased HIV acquisition in men (incidence risk ratio 0.5 at 12 months compared with men randomised to the control group who were not circumcised) in a meta-analysis of three randomised controlled trials done in Africa.128 In high-risk communities in Africa, for every eight operations done, one HIV infection is expected to be averted, and the rate of male-to-female HIV transmission after medical male circumcision is reduced by 46%.129 Medical male circumcision is cost-saving in sub-Saharan Africa.130 Task shifting of medical male circumcision from doctors to non-physician clinicians is safe,131 and would help scale up in low-income countries. Despite the potential public health benefits of medical male circumcision, the past 5 years have shown several scale-up challenges.132 Many strategies are needed to increase demand for medical male circumcision, including promotion of benefits of circumcision to men and their female partners, and supply-side interventions to provide medical male circumcision through mobile clinics and devices that reduce procedure time.133 Findings of meta-analyses of studies in several different risk groups and regions have shown that behavioural interventions reduce self-reported risk behaviour.134,135,136 Findings of some studies of behavioural interventions showed that condom use reduced the incidence of HIV infection.137,138 Voluntary counselling and testing for HIV reduces the number of
self-reported sexual partners, but the benefit is largely confined to people with HIV.144

Other interventions to reduce HIV infectiousness have focused on treatment of co-infections, notably herpes simplex type-2 infection, which causes genital herpes. Aciclovir and valaciclovir decrease plasma and genital HIV concentrations.145 To establish whether the magnitude of HIV suppression was sufficient to reduce HIV transmission, a placebo-controlled trial was done in African HIV serodiscordant couples, aciclovir reduced plasma HIV concentrations by 0·25 log_{10}, which was not associated with decreased HIV transmission,146 but delayed HIV disease progression slightly.147 Increased doses of valaciclovir achieved significantly higher reductions in plasma HIV concentrations.148 Additional research is needed to define the role of other interventions to treat co-infections.149 The first trial of population-based interventions to control sexually transmitted infections showed a reduction in HIV incidence,170 but three subsequent trials and a meta-analysis reported no significant effect on HIV incidence.171

Vaccines
Big challenges face the development of an effective HIV vaccine, including the genetic diversity of HIV, uncertainty about what constitutes protective immunity, and difficulty in the development of antigens that are highly immunogenic. Findings of clinical trials of HIV vaccines have eliminated several candidate vaccines that have not shown efficacy. One trial172 of a prime-boost HIV vaccine strategy that used an adenovirus vector resulted in an increased rate of HIV infections in the active group in uncircumcised men and men who had pre-existing antibodies to the adenovirus vector serotype. The RV144 trial173 done in Thailand, provided the only evidence up to now that vaccine protection could be achieved with a 31% reduction in HIV incidence,174 but three subsequent trials and a meta-analysis reported no significant effect on HIV incidence.175

Conclusions
HIV continues to be a major contributor to the global burden of disease, especially in sub-Saharan Africa. Antiretroviral therapy is changing the global epidemiology of HIV by increasing prevalence because of reductions in AIDS deaths, and is contributing to decreasing HIV incidence by reduction of the risk of transmission. HIV incidence in men who have sex with men is not decreasing despite high antiretroviral therapy coverage. The drivers of the HIV epidemic in men who have sex with men include increasing risk behaviour since the introduction of effective antiretroviral therapy, the high transmission risk of receptive anal intercourse, sexual networks, and stigma restricting access to care. In injection drug users stigma plays a major part in restriction of access to interventions that prevent HIV and care for those who are HIV-positive. Immune activation, which is reduced but not abolished by antiretroviral therapy, plays an important part in the pathogenesis of vascular disease, the risk of which is increased in HIV infection. Improved understanding of viral latency and reservoirs might result in a cure. Recent advances in the prevention of HIV have been dominated by the role of antiretroviral drugs in reduction of mother-to-child transmission and as pre-exposure prophylaxis in high risk groups. The use of antiretroviral therapy in early HIV infection to reduce transmission is being studied in randomised controlled trials, but there will be implementation challenges in countries with a generalised HIV epidemic. An effective vaccine remains elusive despite two decades of effort.

Contributors
All authors contributed equally.

Declaration of interests
SL’s institution has received funding from Merck Sharp and Dohme, Gilead, Janssen, Bristol-Myers Squibb, and ViiV Healthcare for her participation in investigator initiated research, preparation of educational materials, presentations at symposia, and consultancy work. GM and CC declare no competing interests. There was no funding source for this Seminar.

References

